3,672 research outputs found

    Lateral transport of thermal capillary waves

    Full text link
    We demonstrate that collective motion of interfacial fluctuations can occur at the interface between two coexisting thermodynamic phases. Based on computer simulation results for driven diffusive Ising and Blume-Capel models, we conjecture that the thermal capillary waves at a planar interface travel along the interface if the lateral order parameter current j_op(y) is an odd function of the distance y from the interface and hence possesses opposite directions in the two phases. Such motion does not occur if j_op(y) is an even function of y. A discrete Gaussian interface model with effective dynamics exhibits similiar transport phenomena but with a simpler dispersion relation. These findings open up avenues for controlled interfacial transport on the nanoscale.Comment: 4 pages, 6 figure

    Oblique Gravity Wave Propagation During Sudden Stratospheric Warmings

    Get PDF
    Gravity waves (GWs) are important for coupling the mesosphere to the lower atmosphere during sudden stratospheric warmings (SSWs). Here, a minor SSW is internally generated in a simulation with the upper-atmosphere configuration of the ICOsahedral Nonhydrostatic model. At a horizontal resolution of 20 km the simulation uses no GW drag parameterizations but resolves large fractions of the GW spectrum explicitly, including orographic and nonorographic sources. Consistent with previous studies, the simulated zonal-mean stratospheric warming is accompanied by zonal-mean mesospheric cooling. During the course of the SSW the mesospheric GW momentum flux (GWMF) turns from mainly westward to mainly eastward. Waves of large phase speed (40–80 m s -1) dominate the eastward GWMF during the peak phase of the warming. The GWMF is strongest along the polar night jet axis. Parameterizations of GWs usually assume straight upward propagation, but this assumption is often not satisfied. In the case studied here, a substantial amount of the GWMF is significantly displaced horizontally between the source region and the dissipation region, implying that the local impact of GWs on the mesosphere does not need to be above their local transmission through the stratosphere. The simulation produces significant vertically misaligned anomalies between the stratosphere and mesosphere. Observations by the Microwave Limb Sounder confirm the poleward tilt with height of the polar night jet and horizontal displacements between mesospheric cooling and stratospheric warming patterns. Thus, lateral GW propagation may be required to explain the middle-atmosphere temperature evolution in SSW events with significant zonally asymmetric anomalies. ©2019. The Authors

    Interfaces in driven Ising models: shear enhances confinement

    Full text link
    We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetisation profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive can be rescaled to the equilibrium result.Comment: 4 pages, 3 figures Text modified, added Fig. 3b. To appear in Phys. Rev. Letter

    Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field

    Full text link
    Using fundamental measure density functional theory we investigate paranematic-nematic and nematic-nematic phase coexistence in binary mixtures of circular platelets with vanishing thicknesses. An external magnetic field induces uniaxial alignment and acts on the platelets with a strength that is taken to scale with the platelet area. At particle diameter ratio lambda=1.5 the system displays paranematic-nematic coexistence. For lambda=2, demixing into two nematic states with different compositions also occurs, between an upper critical point and a paranematic-nematic-nematic triple point. Increasing the field strength leads to shrinking of the coexistence regions. At high enough field strength a closed loop of immiscibility is induced and phase coexistence vanishes at a double critical point above which the system is homogeneously nematic. For lambda=2.5, besides paranematic-nematic coexistence, there is nematic-nematic coexistence which persists and hence does not end in a critical point. The partial orientational order parameters along the binodals vary strongly with composition and connect smoothly for each species when closed loops of immiscibility are present in the corresponding phase diagram.Comment: 9 pages, to appear in J.Phys:Condensed Matte

    Bulk phase behaviour of binary hard platelet mixtures from density functional theory

    Full text link
    We investigate isotropic-isotropic, isotropic-nematic and nematic-nematic phase coexistence in binary mixtures of circular platelets with vanishing thickness, continuous rotational degrees of freedom and radial size ratios λ\lambda up to 5. A fundamental measure density functional theory, previously used for the one-component model, is proposed and results are compared against those from Onsager theory as a benchmark. For λ≤1.7\lambda \leq 1.7 the system displays isotropic-nematic phase coexistence with a widening of the biphasic region for increasing values of λ\lambda. For size ratios λ≥2\lambda \geq 2, we find demixing into two nematic states becomes stable and an isotropic-nematic-nematic triple point can occur. Fundamental measure theory gives a smaller isotropic-nematic biphasic region than Onsager theory and locates the transition at lower densities. Furthermore, nematic-nematic demixing occurs over a larger range of compositions at a given value of λ\lambda than found in Onsager theory. Both theories predict the same topologies of the phase diagrams. The partial nematic order parameters vary strongly with composition and indicate that the larger particles are more strongly ordered than the smaller particles
    • …
    corecore